Introduction to Recommender Systems Handbook

Recommender Systems (RSs) are software tools and techniques providing suggestions for items to be of use to a user. In this introductory chapter we briefly discuss basic RS ideas and concepts. Our main goal is to delineate, in a coherent and structured way, the chapters included in this handbook and to help the reader navigate the extremely rich and detailed content that the handbook offers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic €32.70 /Month

Buy Now

Price includes VAT (France)

eBook EUR 139.99 Price includes VAT (France)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Preview

Similar content being viewed by others

Recommender Systems: Introduction and Challenges

Chapter © 2015

Recommender Systems: Techniques, Applications, and Challenges

Chapter © 2022

Recommender Systems: Sources of Knowledge and Evaluation Metrics

Chapter © 2013

References

  1. Adomavicius, G., Sankaranarayanan, R., Sen, S., Tuzhilin, A.: Incorporating contextual information in recommender systems using a multidimensional approach. ACM Trans. Inf. Syst. 23(1), 103–145 (2005) ArticleGoogle Scholar
  2. Adomavicius, G., Tuzhilin, A.: Personalization technologies: a process-oriented perspective. Commun. ACM 48(10), 83–90 (2005) ArticleGoogle Scholar
  3. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering 17(6), 734–749 (2005) ArticleGoogle Scholar
  4. Ahn, H., Kim, K.J., Han, I.: Mobile advertisement recommender system using collaborative filtering: Mar-cf. In: Proceedings of the 2006 Conference of the Korea Society of Management Information Systems, pp. 709–715 (2006) Google Scholar
  5. Aï meur, E., Brassard, G., Fernandez, J.M., Onana, F.S.M.: Alambic : a privacy-preserving recommender system for electronic commerce. Int. J. Inf. Sec. 7(5), 307–334 (2008) ArticleGoogle Scholar
  6. Aimeur, E., Vézeau, M.: Short-term profiling for a case-based reasoning recommendation system. In: R.L. de Mántaras, E. Plaza (eds.)Machine Learning: 2000, 11th European Conference on Machine Learning, pp. 23–30. Springer (2000) Google Scholar
  7. Anand, S.S., Mobasher, B.: Intelligent techniques for web personalization. In: Intelligent Techniques for Web Personalization, pp. 1–36. Springer (2005) Google Scholar
  8. Arazy, O., Kumar, N., Shapira, B.: Improving social recommender systems. IT Professional 11(4), 38–44 (2009) ArticleGoogle Scholar
  9. Averjanova, O., Ricci, F., Nguyen, Q.N.: Map-based interaction with a conversational mobile recommender system. In: The Second International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies, 2008. UBICOMM ’08, pp. 212–218 (2008) Google Scholar
  10. Baccigalupo, C., Plaza, E.: Case-based sequential ordering of songs for playlist recommendation. In: T. Roth-Berghofer, M.H. Göker, H.A. Güvenir (eds.)ECCBR, Lecture Notes inComputer Science, vol. 4106, pp. 286–300. Springer (2006) Google Scholar
  11. Bailey, R.A.: Design of comparative experiments. Cambridge University Press Cambridge (2008) Google Scholar
  12. Balabanovic, M., Shoham, Y.: Content-based, collaborative recommendation. Communication of ACM 40(3), 66–72 (1997) ArticleGoogle Scholar
  13. Bellotti, V., Begole, J.B., hsin Chi, E.H., Ducheneaut, N., Fang, J., Isaacs, E., King, T.H., Newman, M.W., Partridge, K., Price, B., Rasmussen, P., Roberts, M., Schiano, D.J., Walen30 Francesco Ricci, Lior Rokach and Bracha Shapira dowski, A.: Activity-based serendipitous recommendations with the magitti mobile leisure guide. In: M. Czerwinski, A.M. Lund, D.S. Tan (eds.)CHI, pp. 1157–1166. ACM (2008) Google Scholar
  14. Ben-Shimon, D., Tsikinovsky, A., Rokach, L., Meisels, A., Shani, G., Naamani, L.: Recommender system from personal social networks. In: K. Wegrzyn-Wolska, P.S. Szczepaniak (eds.)AWIC, Advances in Soft Computing, vol. 43, pp. 47–55. Springer (2007) Google Scholar
  15. Berkovsky, S.: Mediation of User Models: for Enhanced Personalization in Recommender Systems. VDM Verlag (2009) Google Scholar
  16. Berkovsky, S., Borisov, N., Eytani, Y., Kuflik, T., Ricci, F.: Examining users’ attitude towards privacy preserving collaborative filtering. In: International Workshop on Data Mining for User Modeling, at User Modeling 2007, 11th International Conference, UM 2007, Corfu, Greece, June 25, 2007, Proceedings (2007) Google Scholar
  17. Berkovsky, S., Eytani, Y., Kuflik, T., Ricci, F.: Enhancing privacy and preserving accuracy of a distributed collaborative filtering. In: RecSys ’07: Proceedings of the 2007 ACM conference on Recommender systems, pp. 9–16. ACM Press, New York, NY, USA (2007) Google Scholar
  18. Berkovsky, S., Kuflik, T., Ricci, F.: Cross-technique mediation of user models. In: Proceedings of International Conference on Adaptive Hypermedia and AdaptiveWeb-Based Systems [AH2006], pp. 21–30. Dublin (2006) Google Scholar
  19. Berkovsky, S., Kuflik, T., Ricci, F.: Mediation of user models for enhanced personalization in recommender systems. User Modeling and User-Adapted Interaction 18(3), 245–286 (2008) ArticleGoogle Scholar
  20. Berkovsky, S., Kuflik, T., Ricci, F.: Cross-representation mediation of user models. User Modeling and User-Adapted Interaction 19(1-2), 35–63 (2009) ArticleGoogle Scholar
  21. Billsus, D., Pazzani, M.: Learning probabilistic user models. In: UM97 Workshop on Machine Learning for User Modeling (1997). URL http://www.dfki.de/~bauer/um-ws/
  22. Bridge, D., Göker, M., McGinty, L., Smyth, B.: Case-based recommender systems. The Knowledge Engineering review 20(3), 315–320 (2006) ArticleGoogle Scholar
  23. Brusilovsky, P.: Methods and techniques of adaptive hypermedia. User Modeling and User- Adapted Interaction 6(2-3), 87–129 (1996) ArticleMATHGoogle Scholar
  24. Bulander, R., Decker, M., Schiefer, G., Kolmel, B.: Comparison of different approaches for mobile advertising. Mobile Commerce and Services, 2005. WMCS ’05. The Second IEEE International Workshop on pp. 174–182 (2005) Google Scholar
  25. Burke, R.: Hybrid web recommender systems. In: The AdaptiveWeb, pp. 377–408. Springer Berlin / Heidelberg (2007) Google Scholar
  26. Canny, J.F.: Collaborative filtering with privacy. In: IEEE Symposium on Security and Privacy, pp. 45–57 (2002) Google Scholar
  27. Carenini, G., Smith, J., Poole, D.: Towards more conversational and collaborative recommender systems. In: Proceedings of the 2003 International Conference on Intelligent User Interfaces, January 12-15, 2003, Miami, FL, USA, pp. 12–18 (2003) Google Scholar
  28. Cheng, Z., Hurley, N.: Effective diverse and obfuscated attacks on model-based recommender systems. In: RecSys ’09: Proceedings of the third ACM conference on Recommender systems, pp. 141–148. ACM, New York, NY, USA (2009) ChapterGoogle Scholar
  29. Church, K., Smyth, B., Cotter, P., Bradley, K.: Mobile information access: A study of emerging search behavior on the mobile internet. ACM Trans. Web 1(1), 4 (2007) ArticleGoogle Scholar
  30. Cosley, D., Lam, S.K., Albert, I., Konstant, J.A., Riedl, J.: Is seeing believing? how recommender system interfaces affect users’ opinions. In: In Proceedings of the CHI 2003 Conference on Human factors in Computing Systems. Fort Lauderdale, FL (2003) Google Scholar
  31. Felfernig, A., Friedrich, G., Schubert, M., Mandl, M., Mairitsch, M., Teppan, E.: Plausible repairs for inconsistent requirements. In: Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI’09), pp. 791–796. Pasadena, California, USA (2009) Google Scholar
  32. Fisher, G.: User modeling in human-computer interaction. User Modeling and User-Adapted Interaction 11, 65–86 (2001) ArticleMATHGoogle Scholar
  33. George, T., Merugu, S.: A scalable collaborative filtering framework based on co-clustering. In: Proceedings of the 5th IEEE Conference on Data Mining (ICDM), pp. 625–628. IEEE Computer Society, Los Alamitos, CA, USA (2005)1 Introduction to Recommender Systems Handbook 31 Google Scholar
  34. Golbeck, J.: Generating predictive movie recommendations from trust in social networks. In: Trust Management, 4th International Conference, iTrust 2006, Pisa, Italy, May 16-19, 2006, Proceedings, pp. 93–104 (2006) Google Scholar
  35. Goldberg, D., Nichols, D., Oki, B.M., Terry, D.: Using collaborative filtering to weave an information tapestry. Commun. ACM 35(12), 61–70 (1992) ArticleGoogle Scholar
  36. Groh, G., Ehmig, C.: Recommendations in taste related domains: collaborative filtering vs. social filtering. In: GROUP ’07: Proceedings of the 2007 international ACM conference on Supporting group work, pp. 127–136. ACM, New York, NY, USA (2007) ChapterGoogle Scholar
  37. Guy, I., Zwerdling, N., Carmel, D., Ronen, I., Uziel, E., Yogev, S., Ofek-Koifman, S.: Personalized recommendation of social software items based on social relations. In: RecSys ’09: Proceedings of the third ACM conference on Recommender systems, pp. 53–60. ACM, New York, NY, USA (2009) ChapterGoogle Scholar
  38. Han, P., Xie, B., Yang, F., Sheng, R.: A scalable p2p recommender system based on distributed collaborative filtering. Expert systems with applications (2004) Google Scholar
  39. Hayes, C., Cunningham, P.: Smartradio-community based music radio. Knowledge Based Systems 14(3-4), 197–201 (2001) ArticleGoogle Scholar
  40. He, L., Zhang, J., Zhuo, L., Shen, L.: Construction of user preference profile in a personalized image retrieval. In: Neural Networks and Signal Processing, 2008 International Conference on, pp. 434–439 (2008) Google Scholar
  41. Heckmann, D., Schwartz, T., Brandherm, B., Schmitz, M., von Wilamowitz-Moellendorff, M.: Gumo - the general user model ontology. In: User Modeling 2005, 10th International Conference, UM 2005, Edinburgh, Scotland, UK, July 24-29, 2005, Proceedings, pp. 428– 432 (2005) Google Scholar
  42. Herlocker, J., Konstan, J., Riedl, J.: Explaining collaborative filtering recommendations. In: In proceedings of ACM 2000 Conference on Computer Supported Cooperative Work, pp. 241–250 (2000) Google Scholar
  43. Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative filtering recommender systems. ACM Transaction on Information Systems 22(1), 5–53 (2004) ArticleGoogle Scholar
  44. Horozov, T., Narasimhan, N., Vasudevan, V.: Using location for personalized POI recommendations in mobile environments. In: Proc. Int’l Sym. Applications on Internet, pp. 124–129. EEE Computer Society (2006) Google Scholar
  45. Hurley, N., Cheng, Z., Zhang, M.: Statistical attack detection. In: RecSys ’09: Proceedings of the third ACM conference on Recommender systems, pp. 149–156. ACM, New York, NY, USA (2009) ChapterGoogle Scholar
  46. Hwang, C.S., Kuo, N., Yu, P.: Representative-based diversity retrieval. In: Innovative Computing Information and Control, 2008. ICICIC ’08. 3rd International Conference on, pp. 155–155 (2008) Google Scholar
  47. Jannach, D.: Finding preferred query relaxations in content-based recommenders. In: 3rd International IEEE Conference on Intelligent Systems, pp. 355–360 (2006) Google Scholar
  48. Jannach, D., Zanker, M., Felfernig, A., Friedrich, G.: Recommender Systems An Introduction. Cambridge University Press (2010) Google Scholar
  49. Jessenitschnig, M., Zanker, M.: A generic user modeling component for hybrid recommendation strategies. E-Commerce Technology, IEEE International Conference on 0, 337–344 (2009). DOI http://doi.ieeecomputersociety.org/10.1109/CEC.2009.83
  50. Kay, J.: Scrutable adaptation: Because we can and must. In: Adaptive Hypermedia and AdaptiveWeb-Based Systems, 4th International Conference, AH 2006, Dublin, Ireland, June 21-23, 2006, Proceedings, pp. 11–19 (2006) Google Scholar
  51. Kim, C.Y., Lee, J.K., Cho, Y.H., Kim, D.H.: Viscors: A visual-content recommender for the mobile web. IEEE Intelligent Systems 19(6), 32–39 (2004) ArticleGoogle Scholar
  52. Kobsa, A.: Generic user modeling systems. In: P. Brusilovsky, A. Kobsa,W. Nejdl (eds.)The Adaptive Web, Lecture Notes in Computer Science, vol. 4321, pp. 136–154. Springer (2007) Google Scholar
  53. Kobsa, A.: Privacy-enhanced personalization. In: D.Wilson, H.C. Lane (eds.)FLAIRS Conference, p. 10. AAAI Press (2008) Google Scholar
  54. Koren, Y., Bell, R.M., Volinsky, C.: Matrix factorization techniques for recommender systems. IEEE Computer 42(8), 30–37 (2009) 32 Francesco Ricci, Lior Rokach and Bracha Shapira Google Scholar
  55. Kramer, R., Modsching, M., ten Hagen, K.: Field study on methods for elicitation of preferences using a mobile digital assistant for a dynamic tour guide. In: SAC ’06: Proceedings of the 2006 ACM symposium on Applied computing, pp. 997–1001. ACM Press, New York, NY, USA (2006) ChapterGoogle Scholar
  56. Lam, S.K., Frankowski, D., Riedl, J.: Do you trust your recommendations? an exploration of security and privacy issues in recommender systems. In: G. Müller (ed.)ETRICS, LectureNotes in Computer Science, vol. 3995, pp. 14–29. Springer (2006) Google Scholar
  57. Lee, H., Park, S.J.: Moners: A news recommender for the mobile web. Expert Systems with Applications 32(1), 143 – 150 (2007) Google Scholar
  58. Linden, G., Smith, B., York, J.: Amazon.com recommendations: Item-to-item collaborative filtering. IEEE Internet Computing 7(1), 76–80 (2003) ArticleMATHGoogle Scholar
  59. Mahmood, T., Ricci, F.: Towards learning user-adaptive state models in a conversational recommender system. In: A. Hinneburg (ed.)LWA 2007: Lernen - Wissen - Adaption, Halle, September 2007, Workshop Proceedings, pp. 373–378. Martin-Luther-University Halle-Wittenberg (2007) Google Scholar
  60. Mahmood, T., Ricci, F.: Improving recommender systems with adaptive conversational strategies. In: C. Cattuto, G. Ruffo, F. Menczer (eds.)Hypertext, pp. 73–82. ACM (2009) Google Scholar
  61. Mahmood, T., Ricci, F., Venturini, A., Höpken,W.: Adaptive recommender systems for travel planning. In: W.H. Peter OConnor, U. Gretzel (eds.)Information and Communication Technologies in Tourism 2008, proceedings of ENTER 2008 International Conference, pp. 1–11. Springer, Innsbruck (2008) Google Scholar
  62. Mahmoud, Q.: Provisioning context-aware advertisements to wireless mobile users. Multimedia and Expo, 2006 IEEE International Conference on pp. 669–672 (2006) Google Scholar
  63. Manning, C.: Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008) MATHGoogle Scholar
  64. Massa, P., Avesani, P.: Trust-aware collaborative filtering for recommender systems. In: Proceedings of the International Conference on Cooperative Information Systems, CoopIS, pp. 492–508 (2004) Google Scholar
  65. McCarthy, K., Salam´o, M., Coyle, L., McGinty, L., Smyth, B., Nixon, P.: Group recommender systems: a critiquing based approach. In: C. Paris, C.L. Sidner (eds.)IUI, pp. 267– 269. ACM (2006) Google Scholar
  66. McGinty, L., Smyth, B.: On the role of diversity in conversational recommender systems. In: A. Aamodt, D. Bridge, K. Ashley (eds.)ICCBR 2003, the 5th International Conference on Case-Based Reasoning, pp. 276–290. Trondheim, Norway (2003) Google Scholar
  67. McGinty, L., Smyth, B.: Adaptive selection: An analysis of critiquing and preference-based feedback in conversational recommender systems. International Journal of Electronic Commerce 11(2), 35–57 (2006) ArticleGoogle Scholar
  68. McNee, S.M., Riedl, J., Konstan, J.A.: Being accurate is not enough: how accuracy metrics have hurt recommender systems. In: CHI ’06: CHI ’06 extended abstracts on Human factors in computing systems, pp. 1097–1101. ACM Press, New York, NY, USA (2006) ChapterGoogle Scholar
  69. McSherry, D.: Diversity-conscious retrieval. In: S. Craw, A. Preece (eds.)Advances in Case-Based Reasoning, Proceedings of the 6th European Conference on Case Based Reasoning, ECCBR 2002, pp. 219–233. Springer Verlag, Aberdeen, Scotland (2002) Google Scholar
  70. McSherry, F., Mironov, I.: Differentially private recommender systems: building privacy into the net. In: KDD ’09: Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 627–636. ACM, New York, NY, USA (2009) ChapterGoogle Scholar
  71. Mirzadeh, N., Ricci, F.: Cooperative query rewriting for decision making support and recommender systems. Applied Artificial Intelligence 21, 1–38 (2007) ArticleGoogle Scholar
  72. Montaner, M., L´opez, B., de la Rosa, J.L.: A taxonomy of recommender agents on the internet. Artificial Intelligence Review 19(4), 285–330 (2003) ArticleGoogle Scholar
  73. Nguyen, Q.N., Ricci, F.: Replaying live-user interactions in the off-line evaluation of critiquebased mobile recommendations. In: RecSys ’07: Proceedings of the 2007 ACM conference on Recommender systems, pp. 81–88. ACM Press, New York, NY, USA (2007)1 Introduction to Recommender Systems Handbook 33 ChapterGoogle Scholar
  74. Nguyen, Q.N., Ricci, F.: Conversational case-based recommendations exploiting a structured case model. In: Advances in Case-Based Reasoning, 9th European Conference, ECCBR 2008, Trier, Germany, September 1-4, 2008. Proceedings, pp. 400–414 (2008) Google Scholar
  75. Papagelis, M., Rousidis, I., Plexousakis, D., Theoharopoulos, E.: Incremental collaborative filtering for highly-scalable recommendation algorithms. In: M.S. Hacid, N.V. Murray, Z.W. Ras, S. Tsumoto (eds.)ISMIS, Lecture Notes in Computer Science, vol. 3488, pp. 553–561. Springer (2005) Google Scholar
  76. Park, M.H., Hong, J.H., Cho, S.B.: Location-based recommendation system using bayesian user’s preference model in mobile devices. In: J. Indulska, J. Ma, L.T. Yang, T. Ungerer, J. Cao (eds.)UIC, Lecture Notes in Computer Science, vol. 4611, pp. 1130–1139. Springer (2007) Google Scholar
  77. Park, S., Kang, S., Kim, Y.K.: A channel recommendation system in mobile environment. Consumer Electronics, IEEE Transactions on 52(1), 33–39 (2006). DOI 10.1109/TCE.2006. 1605022 Google Scholar
  78. Pazzani, M.J.: A framework for collaborative, content-based and demographic filtering. Artificial Intelligence Review 13, 393–408 (1999) ArticleGoogle Scholar
  79. Polat, H., Du, W.: Privacy-preserving collaborative filtering using randomized perturbation techniques. In: Proceedings of the 3rd IEEE International Conference on Data Mining (ICDM 2003), 19-22 December 2003, Melbourne, Florida, USA, pp. 625–628 (2003) Google Scholar
  80. Puerta Melguizo, M.C., Boves, L., Deshpande, A., Ramos, O.M.: A proactive recommendation system for writing: helping without disrupting. In: ECCE ’07: Proceedings of the 14th European conference on Cognitive ergonomics, pp. 89–95. ACM, New York, NY, USA (2007). DOI http://doi.acm.org/10.1145/1362550.1362569
  81. Ramakrishnan, N., Keller, B.J., Mirza, B.J., Grama, A., Karypis, G.: When being weak is brave: Privacy in recommender systems. IEEE Internet Computing cs.CG/0105028 (2001) Google Scholar
  82. Reilly, J., McCarthy, K., McGinty, L., Smyth, B.: Dynamic critiquing. In: Advances in Case-Based Reasoning, 7th European Conference, ECCBR 2004, Madrid, Spain, August 30 - September 2, 2004, Proceedings, pp. 763–777 (2004) Google Scholar
  83. Reilly, J., Zhang, J., McGinty, L., Pu, P., Smyth, B.: Evaluating compound critiquing recommenders: a real-user study. In: EC ’07: Proceedings of the 8th ACM conference on Electronic commerce, pp. 114–123. ACM, New York, NY, USA (2007) ChapterGoogle Scholar
  84. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: Grouplens: An open architecture for collaborative filtering of netnews. In: Proceedings ACM Conference on Computer-Supported Cooperative Work, pp. 175–186 (1994) Google Scholar
  85. Resnick, P., Varian, H.R.: Recommender systems. Communications of the ACM 40(3), 56–58 (1997) ArticleGoogle Scholar
  86. Ricci, F.: Travel recommender systems. IEEE Intelligent Systems 17(6), 55–57 (2002) MathSciNetGoogle Scholar
  87. Ricci, F., Cavada, D., Mirzadeh, N., Venturini, A.: Case-based travel recommendations. In: D.R. Fesenmaier, K.Woeber, H.Werthner (eds.)Destination Recommendation Systems: Behavioural Foundations and Applications, pp. 67–93. CABI (2006) Google Scholar
  88. Ricci, F., Missier, F.D.: Supporting travel decision making through personalized recommendation. In: C.M. Karat, J.O. Blom, J. Karat (eds.)Designing Personalized User Experiences in eCommerce, pp. 231–251. Kluwer Academic Publisher (2004) Google Scholar
  89. Ricci, F., Nguyen, Q.N.: Acquiring and revising preferences in a critique-based mobile recommender system. IEEE Intelligent Systems 22(3), 22–29 (2007). DOI http://doi.ieeecomputersociety.org/10.1109/MIS.2007.43Google Scholar
  90. Sae-Ueng, S., Pinyapong, S., Ogino, A., Kato, T.: Personalized shopping assistance service at ubiquitous shop space. Advanced Information Networking and Applications -Workshops, 2008. AINAW 2008. 22nd International Conference on pp. 838–843 (2008). DOI 10.1109/WAINA.2008.287 Google Scholar
  91. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Incremental singular value decomposition algorithms for highly scalable recommender systems. In: Proceedings of the 5th International Conference in Computers and Information Technology (2002)34 Francesco Ricci, Lior Rokach and Bracha Shapira Google Scholar
  92. Sarwar, B.M., Konstan, J.A., Riedl, J.: Distributed recommender systems for internet commerce. In: M. Khosrow-Pour (ed.)Encyclopedia of Information Science and Technology (II), pp. 907–911. Idea Group (2005) Google Scholar
  93. Schafer, J.B., Frankowski, D., Herlocker, J., Sen, S.: Collaborative filtering recommender systems. In: The Adaptive Web, pp. 291–324. Springer Berlin / Heidelberg (2007) ChapterGoogle Scholar
  94. Schafer, J.B., Konstan, J.A., Riedl, J.: E-commerce recommendation applications. Data Mining and Knowledge Discovery 5(1/2), 115–153 (2001) ArticleMATHGoogle Scholar
  95. Schifanella, R., Panisson, A., Gena, C., Ruffo, G.: Mobhinter: epidemic collaborative filtering and self-organization in mobile ad-hoc networks. In: RecSys ’08: Proceedings of the 2008 ACM conference on Recommender systems, pp. 27–34. ACM, New York, NY, USA (2008) ChapterGoogle Scholar
  96. Schwartz, B.: The Paradox of Choice. ECCO, New York (2004) Google Scholar
  97. van Setten, M., McNee, S.M., Konstan, J.A.: Beyond personalization: the next stage of recommender systems research. In: R.S. Amant, J. Riedl, A. Jameson (eds.)IUI, p. 8. ACM (2005) Google Scholar
  98. van Setten, M., Pokraev, S., Koolwaaij, J.: Context-aware recommendations in the mobile tourist application compass. In: W. Nejdl, P. De Bra (eds.)Adaptive Hypermedia 2004, pp.235–244. Springer Verlag (2004) ChapterGoogle Scholar
  99. Shani, G., Heckerman, D., Brafman, R.I.: An mdp-based recommender system. Journal of Machine Learning Research 6, 1265–1295 (2005) MathSciNetGoogle Scholar
  100. Sharda, N.: Tourism Informatics: Visual Travel Recommender Systems, Social Communities, and User Interface Design. Information Science Reference (2009) Google Scholar
  101. Shardanand, U., Maes, P.: Social information filtering: algorithms for automating ”word of mouth”. In: Proceedings of the Conference on Human Factors in Computing Systems (CHI’95), pp. 210–217 (1995) Google Scholar
  102. Shokri, R., Pedarsani, P., Theodorakopoulos, G., Hubaux, J.P.: Preserving privacy in collaborative filtering through distributed aggregation of offline profiles. In: RecSys ’09: Proceedings of the third ACM conference on Recommender systems, pp. 157–164. ACM, New York, NY, USA (2009) ChapterGoogle Scholar
  103. Sinha, R.R., Swearingen, K.: Comparing recommendations made by online systems and friends. In: DELOS Workshop: Personalisation and Recommender Systems in Digital Libraries (2001) Google Scholar
  104. Smyth, B., McClave, P.: Similarity vs diversity. In: Proceedings of the 4th International Conference on Case-Based Reasoning. Springer-Verlag (2001) Google Scholar
  105. Swearingen, K., Sinha, R.: Beyond algorithms: An HCI perspective on recommender systems. In: J.L. Herlocker (ed.)Recommender Systems, papers from the 2001 ACM SIGIR Workshop. New Orleans, LA - USA (2001) Google Scholar
  106. Taghipour, N., Kardan, A.: A hybrid web recommender system based on q-learning. In: Proceedings of the 2008 ACM Symposium on Applied Computing (SAC), Fortaleza, Ceara, Brazil, March 16-20, 2008, pp. 1164–1168 (2008) Google Scholar
  107. Taghipour, N., Kardan, A., Ghidary, S.S.: Usage-based web recommendations: a reinforcement learning approach. In: Proceedings of the 2007 ACM Conference on Recommender Systems, RecSys 2007, Minneapolis, MN, USA, October 19-20, 2007, pp. 113–120 (2007) Google Scholar
  108. Takács, G., Pilászy, I., Németh, B., Tikk, D.: Scalable collaborative filtering approaches for large recommender systems. J. Mach. Learn. Res. 10, 623–656 (2009) Google Scholar
  109. Tan, P.N.: Introduction to Data Mining. Pearson Addison Wesley, San Francisco (2006) Google Scholar
  110. Thompson, C.A., Goker, M.H., Langley, P.: A personalized system for conversational recommendations. Artificial Intelligence Research 21, 393–428 (2004) Google Scholar
  111. Tung, H.W., Soo, V.W.: A personalized restaurant recommender agent for mobile e-service. In: S.T. Yuan, J. Liu (eds.)Proceedings of the IEEE International Conference on e- Technology, e-Commerce and e-Service, EEE’04, pp. 259–262. IEEE Computer Society Press, Taipei, Taiwan (2004) ChapterGoogle Scholar
  112. Van Roy, B., Yan, X.: Manipulation-resistant collaborative filtering systems. In: RecSys ’09: Proceedings of the third ACM conference on Recommender systems, pp. 165–172. ACM, New York, NY, USA (2009) Google Scholar
  113. Wang, J., Pouwelse, J.A., Lagendijk, R.L., Reinders, M.J.T.: Distributed collaborative filtering for peer-to-peer file sharing systems. In: H. Haddad (ed.)SAC, pp. 1026–1030. ACM (2006) Google Scholar
  114. Wang, Y., Kobsa, A.: Performance evaluation of a privacy-enhancing framework for personalized websites. In: G.J. Houben, G.I. McCalla, F. Pianesi, M. Zancanaro (eds.)UMAP, Lecture Notes in Computer Science, vol. 5535, pp. 78–89. Springer (2009) Google Scholar
  115. Wietsma, R.T.A., Ricci, F.: Product reviews in mobile decision aid systems. In: Pervasive Mobile Interaction Devices (PERMID 2005)- Mobile Devices as Pervasive User Interfaces and Interaction Devices - Workshop in conjunction with: The 3rd International Conference on Pervasive Computing (PERVASIVE 2005), May 11 2005, Munich, Germany, pp. 15–18. LMU Munich (2005) Google Scholar
  116. Xie, B., Han, P., Yang, F., Shen, R.: An efficient neighbor searching scheme of distributed collaborative filtering on p2p overlay network. Database and Expert Systems Applications pp. 141–150 (2004) Google Scholar
  117. Yuan, S.T., Tsao, Y.W.: A recommendation mechanism for contextualized mobile advertising. Expert Systems with Applications 24(4), 399–414 (2003) ArticleGoogle Scholar
  118. Zhang, F.: Research on recommendation list diversity of recommender systems. Management of e-Commerce and e-Government, International Conference on pp. 72–76 (2008) Google Scholar
  119. Zhang, M.: Enhancing diversity in top-n recommendation. In: RecSys ’09: Proceedings of the third ACM conference on Recommender systems, pp. 397–400. ACM, New York, NY, USA (2009) ChapterGoogle Scholar
  120. Zhou, B., Hui, S., Chang, K.: An intelligent recommender system using sequential web access patterns. In: Cybernetics and Intelligent Systems, 2004 IEEE Conference on, vol. 1, pp. 393–398 vol.1 (2004) Google Scholar
  121. Ziegler, C.N., McNee, S.M., Konstan, J.A., Lausen, G.: Improving recommendation liststhrough topic diversification. In: WWW ’05: Proceedings of the 14th international conference on World Wide Web, pp. 22–32. ACM Press, New York, NY, USA (2005) Google Scholar

Author information

Authors and Affiliations

  1. Faculty of Computer Science, Free University of Bozen-Bolzano, Bozen-Bolzano, Italy Francesco Ricci
  2. Department of Information Systems Engineering, Ben-Gurion University of the Negev, Negev, Israel Lior Rokach & Bracha Shapira
  1. Francesco Ricci