Introduction to Recommender Systems Handbook
Recommender Systems (RSs) are software tools and techniques providing suggestions for items to be of use to a user. In this introductory chapter we briefly discuss basic RS ideas and concepts. Our main goal is to delineate, in a coherent and structured way, the chapters included in this handbook and to help the reader navigate the extremely rich and detailed content that the handbook offers.
This is a preview of subscription content, log in via an institution to check access.
Access this chapter
Subscribe and save
Springer+ Basic
€32.70 /Month
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
Price includes VAT (France)
eBook EUR 139.99 Price includes VAT (France)
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Similar content being viewed by others
Recommender Systems: Introduction and Challenges
Chapter © 2015
Recommender Systems: Techniques, Applications, and Challenges
Chapter © 2022
Recommender Systems: Sources of Knowledge and Evaluation Metrics
Chapter © 2013
References
- Adomavicius, G., Sankaranarayanan, R., Sen, S., Tuzhilin, A.: Incorporating contextual information in recommender systems using a multidimensional approach. ACM Trans. Inf. Syst. 23(1), 103–145 (2005) ArticleGoogle Scholar
- Adomavicius, G., Tuzhilin, A.: Personalization technologies: a process-oriented perspective. Commun. ACM 48(10), 83–90 (2005) ArticleGoogle Scholar
- Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering 17(6), 734–749 (2005) ArticleGoogle Scholar
- Ahn, H., Kim, K.J., Han, I.: Mobile advertisement recommender system using collaborative filtering: Mar-cf. In: Proceedings of the 2006 Conference of the Korea Society of Management Information Systems, pp. 709–715 (2006) Google Scholar
- Aï meur, E., Brassard, G., Fernandez, J.M., Onana, F.S.M.: Alambic : a privacy-preserving recommender system for electronic commerce. Int. J. Inf. Sec. 7(5), 307–334 (2008) ArticleGoogle Scholar
- Aimeur, E., Vézeau, M.: Short-term profiling for a case-based reasoning recommendation system. In: R.L. de Mántaras, E. Plaza (eds.)Machine Learning: 2000, 11th European Conference on Machine Learning, pp. 23–30. Springer (2000) Google Scholar
- Anand, S.S., Mobasher, B.: Intelligent techniques for web personalization. In: Intelligent Techniques for Web Personalization, pp. 1–36. Springer (2005) Google Scholar
- Arazy, O., Kumar, N., Shapira, B.: Improving social recommender systems. IT Professional 11(4), 38–44 (2009) ArticleGoogle Scholar
- Averjanova, O., Ricci, F., Nguyen, Q.N.: Map-based interaction with a conversational mobile recommender system. In: The Second International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies, 2008. UBICOMM ’08, pp. 212–218 (2008) Google Scholar
- Baccigalupo, C., Plaza, E.: Case-based sequential ordering of songs for playlist recommendation. In: T. Roth-Berghofer, M.H. Göker, H.A. Güvenir (eds.)ECCBR, Lecture Notes inComputer Science, vol. 4106, pp. 286–300. Springer (2006) Google Scholar
- Bailey, R.A.: Design of comparative experiments. Cambridge University Press Cambridge (2008) Google Scholar
- Balabanovic, M., Shoham, Y.: Content-based, collaborative recommendation. Communication of ACM 40(3), 66–72 (1997) ArticleGoogle Scholar
- Bellotti, V., Begole, J.B., hsin Chi, E.H., Ducheneaut, N., Fang, J., Isaacs, E., King, T.H., Newman, M.W., Partridge, K., Price, B., Rasmussen, P., Roberts, M., Schiano, D.J., Walen30 Francesco Ricci, Lior Rokach and Bracha Shapira dowski, A.: Activity-based serendipitous recommendations with the magitti mobile leisure guide. In: M. Czerwinski, A.M. Lund, D.S. Tan (eds.)CHI, pp. 1157–1166. ACM (2008) Google Scholar
- Ben-Shimon, D., Tsikinovsky, A., Rokach, L., Meisels, A., Shani, G., Naamani, L.: Recommender system from personal social networks. In: K. Wegrzyn-Wolska, P.S. Szczepaniak (eds.)AWIC, Advances in Soft Computing, vol. 43, pp. 47–55. Springer (2007) Google Scholar
- Berkovsky, S.: Mediation of User Models: for Enhanced Personalization in Recommender Systems. VDM Verlag (2009) Google Scholar
- Berkovsky, S., Borisov, N., Eytani, Y., Kuflik, T., Ricci, F.: Examining users’ attitude towards privacy preserving collaborative filtering. In: International Workshop on Data Mining for User Modeling, at User Modeling 2007, 11th International Conference, UM 2007, Corfu, Greece, June 25, 2007, Proceedings (2007) Google Scholar
- Berkovsky, S., Eytani, Y., Kuflik, T., Ricci, F.: Enhancing privacy and preserving accuracy of a distributed collaborative filtering. In: RecSys ’07: Proceedings of the 2007 ACM conference on Recommender systems, pp. 9–16. ACM Press, New York, NY, USA (2007) Google Scholar
- Berkovsky, S., Kuflik, T., Ricci, F.: Cross-technique mediation of user models. In: Proceedings of International Conference on Adaptive Hypermedia and AdaptiveWeb-Based Systems [AH2006], pp. 21–30. Dublin (2006) Google Scholar
- Berkovsky, S., Kuflik, T., Ricci, F.: Mediation of user models for enhanced personalization in recommender systems. User Modeling and User-Adapted Interaction 18(3), 245–286 (2008) ArticleGoogle Scholar
- Berkovsky, S., Kuflik, T., Ricci, F.: Cross-representation mediation of user models. User Modeling and User-Adapted Interaction 19(1-2), 35–63 (2009) ArticleGoogle Scholar
- Billsus, D., Pazzani, M.: Learning probabilistic user models. In: UM97 Workshop on Machine Learning for User Modeling (1997). URL http://www.dfki.de/~bauer/um-ws/
- Bridge, D., Göker, M., McGinty, L., Smyth, B.: Case-based recommender systems. The Knowledge Engineering review 20(3), 315–320 (2006) ArticleGoogle Scholar
- Brusilovsky, P.: Methods and techniques of adaptive hypermedia. User Modeling and User- Adapted Interaction 6(2-3), 87–129 (1996) ArticleMATHGoogle Scholar
- Bulander, R., Decker, M., Schiefer, G., Kolmel, B.: Comparison of different approaches for mobile advertising. Mobile Commerce and Services, 2005. WMCS ’05. The Second IEEE International Workshop on pp. 174–182 (2005) Google Scholar
- Burke, R.: Hybrid web recommender systems. In: The AdaptiveWeb, pp. 377–408. Springer Berlin / Heidelberg (2007) Google Scholar
- Canny, J.F.: Collaborative filtering with privacy. In: IEEE Symposium on Security and Privacy, pp. 45–57 (2002) Google Scholar
- Carenini, G., Smith, J., Poole, D.: Towards more conversational and collaborative recommender systems. In: Proceedings of the 2003 International Conference on Intelligent User Interfaces, January 12-15, 2003, Miami, FL, USA, pp. 12–18 (2003) Google Scholar
- Cheng, Z., Hurley, N.: Effective diverse and obfuscated attacks on model-based recommender systems. In: RecSys ’09: Proceedings of the third ACM conference on Recommender systems, pp. 141–148. ACM, New York, NY, USA (2009) ChapterGoogle Scholar
- Church, K., Smyth, B., Cotter, P., Bradley, K.: Mobile information access: A study of emerging search behavior on the mobile internet. ACM Trans. Web 1(1), 4 (2007) ArticleGoogle Scholar
- Cosley, D., Lam, S.K., Albert, I., Konstant, J.A., Riedl, J.: Is seeing believing? how recommender system interfaces affect users’ opinions. In: In Proceedings of the CHI 2003 Conference on Human factors in Computing Systems. Fort Lauderdale, FL (2003) Google Scholar
- Felfernig, A., Friedrich, G., Schubert, M., Mandl, M., Mairitsch, M., Teppan, E.: Plausible repairs for inconsistent requirements. In: Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI’09), pp. 791–796. Pasadena, California, USA (2009) Google Scholar
- Fisher, G.: User modeling in human-computer interaction. User Modeling and User-Adapted Interaction 11, 65–86 (2001) ArticleMATHGoogle Scholar
- George, T., Merugu, S.: A scalable collaborative filtering framework based on co-clustering. In: Proceedings of the 5th IEEE Conference on Data Mining (ICDM), pp. 625–628. IEEE Computer Society, Los Alamitos, CA, USA (2005)1 Introduction to Recommender Systems Handbook 31 Google Scholar
- Golbeck, J.: Generating predictive movie recommendations from trust in social networks. In: Trust Management, 4th International Conference, iTrust 2006, Pisa, Italy, May 16-19, 2006, Proceedings, pp. 93–104 (2006) Google Scholar
- Goldberg, D., Nichols, D., Oki, B.M., Terry, D.: Using collaborative filtering to weave an information tapestry. Commun. ACM 35(12), 61–70 (1992) ArticleGoogle Scholar
- Groh, G., Ehmig, C.: Recommendations in taste related domains: collaborative filtering vs. social filtering. In: GROUP ’07: Proceedings of the 2007 international ACM conference on Supporting group work, pp. 127–136. ACM, New York, NY, USA (2007) ChapterGoogle Scholar
- Guy, I., Zwerdling, N., Carmel, D., Ronen, I., Uziel, E., Yogev, S., Ofek-Koifman, S.: Personalized recommendation of social software items based on social relations. In: RecSys ’09: Proceedings of the third ACM conference on Recommender systems, pp. 53–60. ACM, New York, NY, USA (2009) ChapterGoogle Scholar
- Han, P., Xie, B., Yang, F., Sheng, R.: A scalable p2p recommender system based on distributed collaborative filtering. Expert systems with applications (2004) Google Scholar
- Hayes, C., Cunningham, P.: Smartradio-community based music radio. Knowledge Based Systems 14(3-4), 197–201 (2001) ArticleGoogle Scholar
- He, L., Zhang, J., Zhuo, L., Shen, L.: Construction of user preference profile in a personalized image retrieval. In: Neural Networks and Signal Processing, 2008 International Conference on, pp. 434–439 (2008) Google Scholar
- Heckmann, D., Schwartz, T., Brandherm, B., Schmitz, M., von Wilamowitz-Moellendorff, M.: Gumo - the general user model ontology. In: User Modeling 2005, 10th International Conference, UM 2005, Edinburgh, Scotland, UK, July 24-29, 2005, Proceedings, pp. 428– 432 (2005) Google Scholar
- Herlocker, J., Konstan, J., Riedl, J.: Explaining collaborative filtering recommendations. In: In proceedings of ACM 2000 Conference on Computer Supported Cooperative Work, pp. 241–250 (2000) Google Scholar
- Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative filtering recommender systems. ACM Transaction on Information Systems 22(1), 5–53 (2004) ArticleGoogle Scholar
- Horozov, T., Narasimhan, N., Vasudevan, V.: Using location for personalized POI recommendations in mobile environments. In: Proc. Int’l Sym. Applications on Internet, pp. 124–129. EEE Computer Society (2006) Google Scholar
- Hurley, N., Cheng, Z., Zhang, M.: Statistical attack detection. In: RecSys ’09: Proceedings of the third ACM conference on Recommender systems, pp. 149–156. ACM, New York, NY, USA (2009) ChapterGoogle Scholar
- Hwang, C.S., Kuo, N., Yu, P.: Representative-based diversity retrieval. In: Innovative Computing Information and Control, 2008. ICICIC ’08. 3rd International Conference on, pp. 155–155 (2008) Google Scholar
- Jannach, D.: Finding preferred query relaxations in content-based recommenders. In: 3rd International IEEE Conference on Intelligent Systems, pp. 355–360 (2006) Google Scholar
- Jannach, D., Zanker, M., Felfernig, A., Friedrich, G.: Recommender Systems An Introduction. Cambridge University Press (2010) Google Scholar
- Jessenitschnig, M., Zanker, M.: A generic user modeling component for hybrid recommendation strategies. E-Commerce Technology, IEEE International Conference on 0, 337–344 (2009). DOI http://doi.ieeecomputersociety.org/10.1109/CEC.2009.83
- Kay, J.: Scrutable adaptation: Because we can and must. In: Adaptive Hypermedia and AdaptiveWeb-Based Systems, 4th International Conference, AH 2006, Dublin, Ireland, June 21-23, 2006, Proceedings, pp. 11–19 (2006) Google Scholar
- Kim, C.Y., Lee, J.K., Cho, Y.H., Kim, D.H.: Viscors: A visual-content recommender for the mobile web. IEEE Intelligent Systems 19(6), 32–39 (2004) ArticleGoogle Scholar
- Kobsa, A.: Generic user modeling systems. In: P. Brusilovsky, A. Kobsa,W. Nejdl (eds.)The Adaptive Web, Lecture Notes in Computer Science, vol. 4321, pp. 136–154. Springer (2007) Google Scholar
- Kobsa, A.: Privacy-enhanced personalization. In: D.Wilson, H.C. Lane (eds.)FLAIRS Conference, p. 10. AAAI Press (2008) Google Scholar
- Koren, Y., Bell, R.M., Volinsky, C.: Matrix factorization techniques for recommender systems. IEEE Computer 42(8), 30–37 (2009) 32 Francesco Ricci, Lior Rokach and Bracha Shapira Google Scholar
- Kramer, R., Modsching, M., ten Hagen, K.: Field study on methods for elicitation of preferences using a mobile digital assistant for a dynamic tour guide. In: SAC ’06: Proceedings of the 2006 ACM symposium on Applied computing, pp. 997–1001. ACM Press, New York, NY, USA (2006) ChapterGoogle Scholar
- Lam, S.K., Frankowski, D., Riedl, J.: Do you trust your recommendations? an exploration of security and privacy issues in recommender systems. In: G. Müller (ed.)ETRICS, LectureNotes in Computer Science, vol. 3995, pp. 14–29. Springer (2006) Google Scholar
- Lee, H., Park, S.J.: Moners: A news recommender for the mobile web. Expert Systems with Applications 32(1), 143 – 150 (2007) Google Scholar
- Linden, G., Smith, B., York, J.: Amazon.com recommendations: Item-to-item collaborative filtering. IEEE Internet Computing 7(1), 76–80 (2003) ArticleMATHGoogle Scholar
- Mahmood, T., Ricci, F.: Towards learning user-adaptive state models in a conversational recommender system. In: A. Hinneburg (ed.)LWA 2007: Lernen - Wissen - Adaption, Halle, September 2007, Workshop Proceedings, pp. 373–378. Martin-Luther-University Halle-Wittenberg (2007) Google Scholar
- Mahmood, T., Ricci, F.: Improving recommender systems with adaptive conversational strategies. In: C. Cattuto, G. Ruffo, F. Menczer (eds.)Hypertext, pp. 73–82. ACM (2009) Google Scholar
- Mahmood, T., Ricci, F., Venturini, A., Höpken,W.: Adaptive recommender systems for travel planning. In: W.H. Peter OConnor, U. Gretzel (eds.)Information and Communication Technologies in Tourism 2008, proceedings of ENTER 2008 International Conference, pp. 1–11. Springer, Innsbruck (2008) Google Scholar
- Mahmoud, Q.: Provisioning context-aware advertisements to wireless mobile users. Multimedia and Expo, 2006 IEEE International Conference on pp. 669–672 (2006) Google Scholar
- Manning, C.: Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008) MATHGoogle Scholar
- Massa, P., Avesani, P.: Trust-aware collaborative filtering for recommender systems. In: Proceedings of the International Conference on Cooperative Information Systems, CoopIS, pp. 492–508 (2004) Google Scholar
- McCarthy, K., Salam´o, M., Coyle, L., McGinty, L., Smyth, B., Nixon, P.: Group recommender systems: a critiquing based approach. In: C. Paris, C.L. Sidner (eds.)IUI, pp. 267– 269. ACM (2006) Google Scholar
- McGinty, L., Smyth, B.: On the role of diversity in conversational recommender systems. In: A. Aamodt, D. Bridge, K. Ashley (eds.)ICCBR 2003, the 5th International Conference on Case-Based Reasoning, pp. 276–290. Trondheim, Norway (2003) Google Scholar
- McGinty, L., Smyth, B.: Adaptive selection: An analysis of critiquing and preference-based feedback in conversational recommender systems. International Journal of Electronic Commerce 11(2), 35–57 (2006) ArticleGoogle Scholar
- McNee, S.M., Riedl, J., Konstan, J.A.: Being accurate is not enough: how accuracy metrics have hurt recommender systems. In: CHI ’06: CHI ’06 extended abstracts on Human factors in computing systems, pp. 1097–1101. ACM Press, New York, NY, USA (2006) ChapterGoogle Scholar
- McSherry, D.: Diversity-conscious retrieval. In: S. Craw, A. Preece (eds.)Advances in Case-Based Reasoning, Proceedings of the 6th European Conference on Case Based Reasoning, ECCBR 2002, pp. 219–233. Springer Verlag, Aberdeen, Scotland (2002) Google Scholar
- McSherry, F., Mironov, I.: Differentially private recommender systems: building privacy into the net. In: KDD ’09: Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 627–636. ACM, New York, NY, USA (2009) ChapterGoogle Scholar
- Mirzadeh, N., Ricci, F.: Cooperative query rewriting for decision making support and recommender systems. Applied Artificial Intelligence 21, 1–38 (2007) ArticleGoogle Scholar
- Montaner, M., L´opez, B., de la Rosa, J.L.: A taxonomy of recommender agents on the internet. Artificial Intelligence Review 19(4), 285–330 (2003) ArticleGoogle Scholar
- Nguyen, Q.N., Ricci, F.: Replaying live-user interactions in the off-line evaluation of critiquebased mobile recommendations. In: RecSys ’07: Proceedings of the 2007 ACM conference on Recommender systems, pp. 81–88. ACM Press, New York, NY, USA (2007)1 Introduction to Recommender Systems Handbook 33 ChapterGoogle Scholar
- Nguyen, Q.N., Ricci, F.: Conversational case-based recommendations exploiting a structured case model. In: Advances in Case-Based Reasoning, 9th European Conference, ECCBR 2008, Trier, Germany, September 1-4, 2008. Proceedings, pp. 400–414 (2008) Google Scholar
- Papagelis, M., Rousidis, I., Plexousakis, D., Theoharopoulos, E.: Incremental collaborative filtering for highly-scalable recommendation algorithms. In: M.S. Hacid, N.V. Murray, Z.W. Ras, S. Tsumoto (eds.)ISMIS, Lecture Notes in Computer Science, vol. 3488, pp. 553–561. Springer (2005) Google Scholar
- Park, M.H., Hong, J.H., Cho, S.B.: Location-based recommendation system using bayesian user’s preference model in mobile devices. In: J. Indulska, J. Ma, L.T. Yang, T. Ungerer, J. Cao (eds.)UIC, Lecture Notes in Computer Science, vol. 4611, pp. 1130–1139. Springer (2007) Google Scholar
- Park, S., Kang, S., Kim, Y.K.: A channel recommendation system in mobile environment. Consumer Electronics, IEEE Transactions on 52(1), 33–39 (2006). DOI 10.1109/TCE.2006. 1605022 Google Scholar
- Pazzani, M.J.: A framework for collaborative, content-based and demographic filtering. Artificial Intelligence Review 13, 393–408 (1999) ArticleGoogle Scholar
- Polat, H., Du, W.: Privacy-preserving collaborative filtering using randomized perturbation techniques. In: Proceedings of the 3rd IEEE International Conference on Data Mining (ICDM 2003), 19-22 December 2003, Melbourne, Florida, USA, pp. 625–628 (2003) Google Scholar
- Puerta Melguizo, M.C., Boves, L., Deshpande, A., Ramos, O.M.: A proactive recommendation system for writing: helping without disrupting. In: ECCE ’07: Proceedings of the 14th European conference on Cognitive ergonomics, pp. 89–95. ACM, New York, NY, USA (2007). DOI http://doi.acm.org/10.1145/1362550.1362569
- Ramakrishnan, N., Keller, B.J., Mirza, B.J., Grama, A., Karypis, G.: When being weak is brave: Privacy in recommender systems. IEEE Internet Computing cs.CG/0105028 (2001) Google Scholar
- Reilly, J., McCarthy, K., McGinty, L., Smyth, B.: Dynamic critiquing. In: Advances in Case-Based Reasoning, 7th European Conference, ECCBR 2004, Madrid, Spain, August 30 - September 2, 2004, Proceedings, pp. 763–777 (2004) Google Scholar
- Reilly, J., Zhang, J., McGinty, L., Pu, P., Smyth, B.: Evaluating compound critiquing recommenders: a real-user study. In: EC ’07: Proceedings of the 8th ACM conference on Electronic commerce, pp. 114–123. ACM, New York, NY, USA (2007) ChapterGoogle Scholar
- Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: Grouplens: An open architecture for collaborative filtering of netnews. In: Proceedings ACM Conference on Computer-Supported Cooperative Work, pp. 175–186 (1994) Google Scholar
- Resnick, P., Varian, H.R.: Recommender systems. Communications of the ACM 40(3), 56–58 (1997) ArticleGoogle Scholar
- Ricci, F.: Travel recommender systems. IEEE Intelligent Systems 17(6), 55–57 (2002) MathSciNetGoogle Scholar
- Ricci, F., Cavada, D., Mirzadeh, N., Venturini, A.: Case-based travel recommendations. In: D.R. Fesenmaier, K.Woeber, H.Werthner (eds.)Destination Recommendation Systems: Behavioural Foundations and Applications, pp. 67–93. CABI (2006) Google Scholar
- Ricci, F., Missier, F.D.: Supporting travel decision making through personalized recommendation. In: C.M. Karat, J.O. Blom, J. Karat (eds.)Designing Personalized User Experiences in eCommerce, pp. 231–251. Kluwer Academic Publisher (2004) Google Scholar
- Ricci, F., Nguyen, Q.N.: Acquiring and revising preferences in a critique-based mobile recommender system. IEEE Intelligent Systems 22(3), 22–29 (2007). DOI http://doi.ieeecomputersociety.org/10.1109/MIS.2007.43Google Scholar
- Sae-Ueng, S., Pinyapong, S., Ogino, A., Kato, T.: Personalized shopping assistance service at ubiquitous shop space. Advanced Information Networking and Applications -Workshops, 2008. AINAW 2008. 22nd International Conference on pp. 838–843 (2008). DOI 10.1109/WAINA.2008.287 Google Scholar
- Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Incremental singular value decomposition algorithms for highly scalable recommender systems. In: Proceedings of the 5th International Conference in Computers and Information Technology (2002)34 Francesco Ricci, Lior Rokach and Bracha Shapira Google Scholar
- Sarwar, B.M., Konstan, J.A., Riedl, J.: Distributed recommender systems for internet commerce. In: M. Khosrow-Pour (ed.)Encyclopedia of Information Science and Technology (II), pp. 907–911. Idea Group (2005) Google Scholar
- Schafer, J.B., Frankowski, D., Herlocker, J., Sen, S.: Collaborative filtering recommender systems. In: The Adaptive Web, pp. 291–324. Springer Berlin / Heidelberg (2007) ChapterGoogle Scholar
- Schafer, J.B., Konstan, J.A., Riedl, J.: E-commerce recommendation applications. Data Mining and Knowledge Discovery 5(1/2), 115–153 (2001) ArticleMATHGoogle Scholar
- Schifanella, R., Panisson, A., Gena, C., Ruffo, G.: Mobhinter: epidemic collaborative filtering and self-organization in mobile ad-hoc networks. In: RecSys ’08: Proceedings of the 2008 ACM conference on Recommender systems, pp. 27–34. ACM, New York, NY, USA (2008) ChapterGoogle Scholar
- Schwartz, B.: The Paradox of Choice. ECCO, New York (2004) Google Scholar
- van Setten, M., McNee, S.M., Konstan, J.A.: Beyond personalization: the next stage of recommender systems research. In: R.S. Amant, J. Riedl, A. Jameson (eds.)IUI, p. 8. ACM (2005) Google Scholar
- van Setten, M., Pokraev, S., Koolwaaij, J.: Context-aware recommendations in the mobile tourist application compass. In: W. Nejdl, P. De Bra (eds.)Adaptive Hypermedia 2004, pp.235–244. Springer Verlag (2004) ChapterGoogle Scholar
- Shani, G., Heckerman, D., Brafman, R.I.: An mdp-based recommender system. Journal of Machine Learning Research 6, 1265–1295 (2005) MathSciNetGoogle Scholar
- Sharda, N.: Tourism Informatics: Visual Travel Recommender Systems, Social Communities, and User Interface Design. Information Science Reference (2009) Google Scholar
- Shardanand, U., Maes, P.: Social information filtering: algorithms for automating ”word of mouth”. In: Proceedings of the Conference on Human Factors in Computing Systems (CHI’95), pp. 210–217 (1995) Google Scholar
- Shokri, R., Pedarsani, P., Theodorakopoulos, G., Hubaux, J.P.: Preserving privacy in collaborative filtering through distributed aggregation of offline profiles. In: RecSys ’09: Proceedings of the third ACM conference on Recommender systems, pp. 157–164. ACM, New York, NY, USA (2009) ChapterGoogle Scholar
- Sinha, R.R., Swearingen, K.: Comparing recommendations made by online systems and friends. In: DELOS Workshop: Personalisation and Recommender Systems in Digital Libraries (2001) Google Scholar
- Smyth, B., McClave, P.: Similarity vs diversity. In: Proceedings of the 4th International Conference on Case-Based Reasoning. Springer-Verlag (2001) Google Scholar
- Swearingen, K., Sinha, R.: Beyond algorithms: An HCI perspective on recommender systems. In: J.L. Herlocker (ed.)Recommender Systems, papers from the 2001 ACM SIGIR Workshop. New Orleans, LA - USA (2001) Google Scholar
- Taghipour, N., Kardan, A.: A hybrid web recommender system based on q-learning. In: Proceedings of the 2008 ACM Symposium on Applied Computing (SAC), Fortaleza, Ceara, Brazil, March 16-20, 2008, pp. 1164–1168 (2008) Google Scholar
- Taghipour, N., Kardan, A., Ghidary, S.S.: Usage-based web recommendations: a reinforcement learning approach. In: Proceedings of the 2007 ACM Conference on Recommender Systems, RecSys 2007, Minneapolis, MN, USA, October 19-20, 2007, pp. 113–120 (2007) Google Scholar
- Takács, G., Pilászy, I., Németh, B., Tikk, D.: Scalable collaborative filtering approaches for large recommender systems. J. Mach. Learn. Res. 10, 623–656 (2009) Google Scholar
- Tan, P.N.: Introduction to Data Mining. Pearson Addison Wesley, San Francisco (2006) Google Scholar
- Thompson, C.A., Goker, M.H., Langley, P.: A personalized system for conversational recommendations. Artificial Intelligence Research 21, 393–428 (2004) Google Scholar
- Tung, H.W., Soo, V.W.: A personalized restaurant recommender agent for mobile e-service. In: S.T. Yuan, J. Liu (eds.)Proceedings of the IEEE International Conference on e- Technology, e-Commerce and e-Service, EEE’04, pp. 259–262. IEEE Computer Society Press, Taipei, Taiwan (2004) ChapterGoogle Scholar
- Van Roy, B., Yan, X.: Manipulation-resistant collaborative filtering systems. In: RecSys ’09: Proceedings of the third ACM conference on Recommender systems, pp. 165–172. ACM, New York, NY, USA (2009) Google Scholar
- Wang, J., Pouwelse, J.A., Lagendijk, R.L., Reinders, M.J.T.: Distributed collaborative filtering for peer-to-peer file sharing systems. In: H. Haddad (ed.)SAC, pp. 1026–1030. ACM (2006) Google Scholar
- Wang, Y., Kobsa, A.: Performance evaluation of a privacy-enhancing framework for personalized websites. In: G.J. Houben, G.I. McCalla, F. Pianesi, M. Zancanaro (eds.)UMAP, Lecture Notes in Computer Science, vol. 5535, pp. 78–89. Springer (2009) Google Scholar
- Wietsma, R.T.A., Ricci, F.: Product reviews in mobile decision aid systems. In: Pervasive Mobile Interaction Devices (PERMID 2005)- Mobile Devices as Pervasive User Interfaces and Interaction Devices - Workshop in conjunction with: The 3rd International Conference on Pervasive Computing (PERVASIVE 2005), May 11 2005, Munich, Germany, pp. 15–18. LMU Munich (2005) Google Scholar
- Xie, B., Han, P., Yang, F., Shen, R.: An efficient neighbor searching scheme of distributed collaborative filtering on p2p overlay network. Database and Expert Systems Applications pp. 141–150 (2004) Google Scholar
- Yuan, S.T., Tsao, Y.W.: A recommendation mechanism for contextualized mobile advertising. Expert Systems with Applications 24(4), 399–414 (2003) ArticleGoogle Scholar
- Zhang, F.: Research on recommendation list diversity of recommender systems. Management of e-Commerce and e-Government, International Conference on pp. 72–76 (2008) Google Scholar
- Zhang, M.: Enhancing diversity in top-n recommendation. In: RecSys ’09: Proceedings of the third ACM conference on Recommender systems, pp. 397–400. ACM, New York, NY, USA (2009) ChapterGoogle Scholar
- Zhou, B., Hui, S., Chang, K.: An intelligent recommender system using sequential web access patterns. In: Cybernetics and Intelligent Systems, 2004 IEEE Conference on, vol. 1, pp. 393–398 vol.1 (2004) Google Scholar
- Ziegler, C.N., McNee, S.M., Konstan, J.A., Lausen, G.: Improving recommendation liststhrough topic diversification. In: WWW ’05: Proceedings of the 14th international conference on World Wide Web, pp. 22–32. ACM Press, New York, NY, USA (2005) Google Scholar
Author information
Authors and Affiliations
- Faculty of Computer Science, Free University of Bozen-Bolzano, Bozen-Bolzano, Italy Francesco Ricci
- Department of Information Systems Engineering, Ben-Gurion University of the Negev, Negev, Israel Lior Rokach & Bracha Shapira
- Francesco Ricci